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A method of obtaining compact finite-difference approximations of h4 accuracy to operators 
of Navier-Stokes type is considered. The basic procedure is developed for operators in one 
space dimension and subsequently applied to problems in more space dimensions and in time. 
Four illustrative numerical examples are given which indicate clearly in various cases that 
excellent accuracy may be obtained using the methods. Comparisons with previous results and 
with the results of h2-accurate computations are made. c 1989 Academic Press, Inc. 

1. INTRODUCTION 

In solving problems governed by the Navier-Stokes equations we are interested 
in approximating spatial operators of typical form L defined by the equation 

Lq4 = 4” - uq5’ = r, (1) 

where the prime denotes differentiation with respect to a space variable, say x, and 
the function u has the significance of a velocity component. In the simple l-dimen- 
sional model (I), u and r would be functions of x, but more general problems can 
be considered by a combination of equations of the form (1). For example the 
function 4(x, y) which satisfies the equation 

(2) 

where (u, v) are 2-dimensional velocity components, can be written as the two 
equations 

a5pla2-ua4jax= r(x,y)= -a2gay* + vadlay. (3) 
390 
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The function 4(x, v) can be interpreted as the steady state scalar vorticity in a 
2-dimensional flow of an incompressible fluid in this case. Similarly the operator L 
occurs in the transport equation 

a*4jax2 - ua4jax = T(X, t) = a#/at 

for the function 4(x, t) and there are many other examples and extensions. 
The standard three-point finite-difference approximation to (1) obtained by 

making use of central differences at a typical grid point x=x0 is 

(1 - $4,) fj, + (1 + ; hu,) & - 24, - /z*r, = 0, 

where h is the grid size and the subscripts 1, 0, 3 denote values at the respective 
points x0+ h, x0, x0-h in accordance with the Southwell notation [l]. The 
approximation (5) is h2-accurate in the sense that the truncation error in 
approximating (1) is 0(/z*). In practice it is desirable that the coefficient matrix 
associated with a finite-difference scheme is diagonally dominant, especially if 
iterative methods of solution are used. For example, the Jacobi and Gauss-Seidel 
point iterative methods both converge for matrices which are diagonally dominant 
(see Varga [2] or Young [3] for theorems concerning the convergence of iterative 
methods applied to diagonally dominant systems). It may also be noted that one 
of the basic underlying reasons for the use of upwind methods is that they preserve 
this diagonally dominant property. The approximation (5) is diagonally dominant 
if Ihu, 1 < 2 at every grid point of the solution domain. However, the velocity com- 
ponent u in (1) is usually multiplied by a Reynolds number factor (here omitted for 
the sake of convenience) which may be large; in this case a very small step length 
is required to achieve diagonal dominance. 

An alternative 0(/z*) approximation to (1) is given by 

(1 - $2.4, + C&U;) Cjl + (1 + $iuO + ah%;) & 

- (2 + 2cdl*z4 $750 - Pr, = 0 (6) 

where c1 is an arbitrary constant. This approximation has an associated matrix 
which is diagonally dominant for all h provided that a 2 $. It was proposed by 
Dennis and Hudson [4] for the case CI = $ and subsequently generalized to a 2 & 
by Lindroos [S]. Note that (6) reduces to (5) if CI =O. The present paper extends 
(6) to give a 3-point formula of h4 accuracy. In this extension we put a = 8 in (6) 
and modify the coefficients of do, #1, and d3 to include terms involving the first and 
second derivatives of u with respect to x at x=x0. The term involving r,, is also 
modified to include terms in rl and r3. When r depends upon another variable, as 
in the case of (3) or (4), these values of r can be expressed in terms of grid values 
of 4; this leads to an h4-accurate compact approximation to (2) which involves only 
the nine grid points centred on the point 0 of the Southwell notation [l] (indicated 
in Fig. 1). 
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FIG. 1. The 9-point molecule. 

There has been much recent interest in compact h4-accurate schemes in which the 
first derivative F= 4 is employed as a dependent variable in addition to 4. There 
are numerous variations, but a typical scheme would employ the approximation 

q+q&=;h(F,+4F,+F,) (7) 

to 4 = F along with the Numerov [6,7] approximation 

tjl - 2&, + q& = @*/12)(G, + 1OGo + G3) (8) 

to (1) written in the form 

4” = uF + r = G. (9) 

Thus provided G is defined, by means of suitable definitions of u and r, then (7) and 
(8) define two sets of finite-difference equations with associated matrices of 
tri-diagonal type which may be solved to give an approximation to each of ~+4 and 
F over the domain of the set of grid points typified by x = x0. Methods of this type 
have recently been reviewed by Hirsh [8] who states that it is the consideration of 
derivatives of 4 as unknowns in the solution procedure which is the key to the 
higher order compact differencing procedures. However, a problem which clearly 
arises is that normally a boundary condition for 4 or F, but not both, will be 
specified at each boundary point in the case of two-point conditions. Thus expan- 
sion procedures at the boundaries will be necessary. This will not be the case for 
methods involving 4 alone, such as those of the present paper. 

Some of the earlier compact differencing methods [9-l l] did in fact eliminate 
completely the derivatives as dependent variables leaving ultimately an expression 
in terms of the variable 4 alone, although it was not clear how such methods could 
readily be extended to problems involving more than one space variable. More 
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recent methods [ 12-141 are based in principle on expressions of the type (7t(9) 
and there are compact methods involving the use of splines [15-171. In the 
operator compact implicit (OCI) methods [18, 191 the whole operator in a 
differential equation is expressed in a compact form and there are numerous other 
contributions to the subject, e.g., [20, 213 through to the more recent ones, for 
example, the method of Leventhal [22] in which a compact implicit method of 
exponential type is given. Many of the contributions are discussed by Hirsh [S] 
and will not be considered here in detail because our object is to present the latest 
developments in h4-accurate compact methods which involve only 4. 

The primary obstacle to giving a compact h4-accurate approximation to (1) is the 
presence of the first derivative 4’. Thus the Numerov approximation (8) involves 
the first derivative of 4 but would not do so if F were not present in (9). A direct 
extension of Numerov’s method to an operator of type (1) was made by Dennis 
[23] by putting. 

x = 4g (x,-h6x<x,+h), (10) 

where 

The function x satisfies the equation 

x” +fx = rg, (12) 

where 

Because (12) does not contain x’ we can approximate it locally at x = x0 using 
either an h*-accurate method or the h4-accurate Numerov method. In either case we 
obtain a three-point, compact approximation for 1 which can be expressed in terms 
of the original function 4 using (10). The coefficients of 4 in both of the approxima- 
tions depend upon g in ( 11) and hence involve the exponentials of definite integrals 
of u corresponding to the points x = x,, - h, x0 + h. The exponential forms of these 
coefficients were given in [23] and a slightly more general form of (1) was 
considered. 

The h4-accurate approximations with exponential coefficients were extended to 
the 2-dimensional equation (2) by Dennis and Hudson in two somewhat different 
forms in [24,25]. In effect these results give compact approximations involving 
only values of 4 at the nine points centred on a typical point (x,, y,,) of a 2-dimen- 
sional square grid. In the present paper it will be shown that satisfactory computa- 
tional results can be obtained by employing expansion techniques in which the 
exponentials are expressed in powers of their arguments. 
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A brief review of a few aspects of the present method was given in [26]. Here, 
we study in detail the approximations which may be obtained to (1) (2), and (4). 
Results of this nature have not been given previously. It is shown that highly 
accurate computational results can be obtained using the methods. Examples of 
numerical solutions of Eqs. ( 1 ), (2), and (4) are given. The problem of heat convec- 
tion in a square cavity is also considered as an example. 

2. THE BASIC ~I~~-ACCURATE APPROXIMATION 

The h2-approximation to (12) using central differences gives, when expressed in 
terms of 4 using (lo), 

g, 4, + g343 - (2 - h2”fo) 40 - h2ro = 0 (14) 

and the h4-accurate Numerov approximation gives 

(1+~2f,/Wg,h+(l +h2f,/12)g,~,-(2-5h2f,/6)~, 
-h2(g,r, + lOr,+g,r,)/12=0. (15) 

The terms g, and g, are exponential coefficients found by substituting x=x0 + h 
and x=x0-h, respectively, in (11). It was found in [4] that expansion of these 
exponential coefficients in powers of their arguments, which is valid for all 
arguments, followed by approximation of the definite integrals derived from (11) 
using a power series expansion for u about x=x0, gave rise to the approximation 
(6) with a = $. Strictly speaking the terms in a in (6) should not be retained because 
when they are grouped together they form a term of order equal to that which has 
already been neglected in forming (14) from (12). They were, however, retained in 
[4] because the associated matrix is diagonally dominant if a = 4. 

The approximation (15) is an h4-accurate approximation. As it is written, the 
leading error neglected on the right side is O(h6) and thus it is valid in an expan- 
sion procedure to retain terms up to this order in h. On expansion of g, and g, to 
this order and identification of various terms involving f and its derivatives from 
(13), we find several possible forms which retain the desired accuracy. For example, 
we can write the approximation to (15) in the form 

c,#, +c,~,-c,~,-h2r,+Co=0, (16) 

where 

c, = 1 - &, + h2(u; - 2&)/12 + h3(z&, - u;j)/24, (17a) 

c3 = 1 + &, + h2(u; - 2&)/12 - /z~(u,u& - u;)/24, (17b) 

c,, = 2 + h2(u; - 2&)/6, (17c) 
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and C, is a term of O(h4) given by 

co = -h2{ (1 - $ hu,) Yi + (1 + $hu,) i.3 - 2r,)/12. (17d) 

Details of one method of derivation are given in the Appendix. 
Note that it has been possible to express the coefficients c, in (16) entirely in 

terms of values of ZJ and its derivatives at the point x = x0. This is achieved during 
simplification of the expansion of (15) without any loss of accuracy, i.e., the 
approximation (16) with the definitions (17) is a fully h4-accurate approximation to 
(1). Moreover, the derivatives ub and z&’ each multiply sets of terms in (16) which 
are, on aggregate, of order h4 and hence if u is given only numerically there is no 
further loss of order of accuracy by approximating these derivatives with the 
central-difference formulae 

2hub z u1 - u3, h&‘l N oNU1-2Uo+U3. (18) 

In this way (16) remains completely compact involving only values at the three 
points centred at x=x0. 

A simpler form of the h4-accurate approximation can be derived from Eq. (17). 
If we write 

a, = 1 - thu, - h2u;/12, a3 = 1 + +hu, - h2u;/12 (19) 

and utilize the fact that 

(20) 

we obtain 

(a; + h2u$48 - h3uJ24) qbl + (a: + h2u;/48 + h3u;;/24) d3 

- (a; + u; + h2u;/24) & - h2r, + Co = 0. (21) 

For ordinary differential equations, the function r(x) in (1) is specified in some 
way as a function of x and (21) then defines a matrix to determine $ subject 
to given two-point boundary conditions. A specific numerical example which 
illustrates the high accuracy obtainable is given in a later section. In cases when 4 
satisfies partial differential equations such as (2) or (4), Eq. (21) defines r in terms 
of 4 and then a further equation is necessary, or more than one if there are more 
independent variables. We consider in detail the case of Eq. (4) in the next section 
and Eq. (2) in the following one. 

Before concluding this section, we recall that with tla &, the original h2-accurate 
approximation (6) has an associated matrix which is diagonally dominant under all 
circumstances. In contrast, the h4-accurate scheme (21) has a diagonally dominant 
associated matrix only if 

lh3u;; 1 d 24~’ + $h2uf, (22) 



396 DENNIS AND HUDSON 

at all grid points of the solution domain, where a is the least of the absolute values 
of a, and a3. However, it is possible to rewrite the h4-accurate scheme as an 
h3-accurate approximation, having an associated matrix which is diagonally 
dominant under all circumstances, together with a fourth-order correction. Details 
are as follows. 

An h3-accurate approximation which always has a diagonally dominant 
associated matrix can be obtained from (21) using upwind methods. The terms 
multiplying the factor h3uJ24 can be arranged as a backward or forward difference 
in 4 plus a deferred correction, depending upon whether &’ is greater or less than 
zero. In this way (21) can be re-written as 

(a; + h2u;/48) q& + (a: + h2u;/48 + h3u;;/12) b3 

-(a; + u; + h2u;/24 + h3u;/12) &, - h2r, + Co-D, = 0 (23) 

at grid points where a;( > 0 and as 

(a: + h2u;/48 - h3uJ12) 4, + (a: + h2u;/4X) cj3 

-(a: + u; + h*u;/24 - h3u;;/12) tjo - h2r, + c, + D, = 0 (24) 

at grid points where u: < 0. The deferred correction D, is defined as 

D, = h3z&b1 + d3 -2&J/24 (25) 

and is 0(/r’). If it is neglected in (23) and (24) we get an h3-accurate approximation 
to (1) using the appropriate equation at each grid point. An approximation to the 
solution of (1) using this scheme can then be improved if desired by adding the 
deferred correction (25) to the left side of (23) or (24) and re-solving these equa- 
tions iteratively until eventually the sequence of approximations to 4 converges at 
all grid points, at which stage the h4-accurate set of Eqs. (21) is satisfied. This type 
of deferred-correction process is well known; it was used, for example, in [27] to 
correct the standard first-order accurate upwind scheme to second-order central- 
difference accuracy by means of a sequence of computations with diagonally 
dominant matrices. 

3. EQUATIONS IN ONE SPACE VARIABLE AND TIME 

For Eq. (4) we need to approximate the equation 

aqs/at = r(x, t) t-26) 

using some finite-difference scheme in the time t and then eliminate r from (21) for 
an h4-accurate method. The truncation error of the approximation in time will be 
a relevant consideration but the general principle of setting up the finite-difference 
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equation will be more or less the same regardless of the approximation used for 
(26). We shall illustrate with the Crank-Nicolson method which gives 

$4(x,, t + k) - $kr(x,, t + k) = $4(x,, t) + ikr(x,, t) (27) 

as a discretization of (26) using a time step k. This is a k*-accurate approximation 
in time, i.e., the truncation error on the right-hand side of (27) is 0(k3). On the 
assumption that 4(x,, t) and T(x~, t) have been determined at all spatial grid 
points, we can use (27) to eliminate T(x~, t + k) from (16), assuming that this latter 
equation holds at time t + k. There are then two main ways of dealing with the 
resulting equation. 

In the first place, the result of this elimination can be expressed in the form 

c,(t+k)q$(t+k)+c,(t+k)d3(t+k)- {2P+c,(t+k)} A,(t+k)+Co(t+k) 

= -aw,(t) - h2r,(t), (28a) 

where /I = h*/k and notation such as 4,,(t) denotes 4(x,, t) (n = 0, 1, 3). The term 
C&t + k) also contains r,,(t + k), r,(t + k) and r,(t + k) through (17d) which must 
be eliminated using (27). However, it is a term of order h4 as it appears in (16) and 
will depend upon /I after the values of r have been eliminated, so it can be left as 
a deferred correction in (28a). Equation (28a) can then be solved iteratively, with 
new approximations to q5,(t + k) used from time to time to calculate improved 
estimates of C,(t + k), using (27) to calculate r,(t + k). In fact, iterative methods are 
frequently quite appropriate since the function u(x, t) in (4) is often itself deter- 
mined as the solution of another governing equation which must be solved 
simultaneously with the set of Eqs. (28a) in an over-all iterative procedure. 

An alternative to treating C,(t + k) as a deferred correction is to eliminate com- 
pletely from (28a) the terms involving r,(t + k) (n = 0, 1, 3) using (27) to give an 
explicitly tridiagonal formulation. This gives the equivalent equation 

[6c,-B{l-~hu,(t+k))l~,(t+k)+ [6c3-131 +~hu,(t+k)}] d3(t+k) 

- (%+ lWM,(t+k) 
= - { 1 - ;huc,(t + k)}[&d,(t) + ;h2r,(t)] 

- { 1 + 4 hu,(t + k)}[&(t) + $h*rJt)] - lO[&(t) + &h*r,(t)]. (28b) 

The set of Eqs. (27) is used to calculate the quantities r,(t) (n = 0, 1, 3), by replacing 
t by t-k (or using the initial data for the first time step). The right-hand side of 
(28b) is then known provided u,(t + k) is known and a simple tridiagonal inversion 
gives the solution. This may be more efficient. On the other hand, if u(x, t) must 
itself be determined as part of the solution procedure, the direct solution procedure 
is probably no more efficient than an iterative procedure. 

A simpler alternative to using (27) is to use the backward-difference approxima- 
tion 

dx,,, t + k) = (4 x,, t+k)-4(x,, t)}/k (n=O, 1, 3) (29) 
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to perform the elimination in (16), although this involves a higher truncation error 
in k. On the other hand we can use (29) to evaluate only the terms in (28a) which 
appear in the correction term C,(t + k) which is a less important term from the 
spatial point of view. In this latter procedure the calculation is only a little more 
complicated than the standard Crank-Nicolson procedure used with h2-accurate 
spatial approximations, but the gain in spatial accuracy is considerable. There are 
clearly many ways to proceed, but a very effective one is to use (28a) with the 
coefficients c,(t + k) expressed in the form (21). The matrix for 4 is inverted by an 
iterative procedure and the terms C, and D,, (Eq. (25)) are added as deferred 
corrections. A numerical example of this technique is described later. 

4. STEADY STATE EQUATIONS IN Two SPACE VARIABLES 

We shall now consider the h4-accurate approximation to (2) in which the tinite- 
difference representation can be expressed as the nine-point formula 

where the Southwell notation is again used. Equation (2) is expressed as the two 
equations (3). The h4 approximation to the first gives (16), where the coefftcients 
are given by (17) and the prime indicates differentiation with respect to x. The 
corresponding approximation to the second of (3) in the y direction is 

c2qb2 + c4d4 - co*& + h’r, + C,* = 0. (31) 

Here the coefficients c2, c4 and c$ are given respectively by the right-hand sides of 
(17at( 17~) but with v replacing u and the prime indicating differentiation with 
regard to y. Further, 

(32) 

The addition of (31) to (16) eliminates the terms +h2r, and the only dependence 
of the equation which results from this elimination upon values of r comes through 
the terms C, and C,j’. Because these terms, given by (17d) and (32), respectively, 
are O(h4) we need employ only h2-accurate expressions to evaluate the terms in r 
which occur in them. This still preserves the h4 accuracy of approximating (2). 

Several methods can be used to form the compact approximation on the 
9-point element of Fig. 1 but they are basically similar in principle. For example, 
the approximation (6) is h2-accurate for any value of CI and it may be used to 
eliminate r. from (32) in terms of &, dl, and #3. A like equation at the point 
x=x0, y =y, + h can be written down to express r2 in terms of #2, +5, and +6, with 
a comparable approximation at x=x0, y =y, - h expressing r4 in terms of b4, &, 
and &. Similarly, if we neglect C,* in (31), the resulting h2-accurate approximation 
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with two further ones at x =x,, + h, y = ye may be used to eliminate ro, rl, and r3 
from (17d). Thus all terms in (17d) and (32) can in this way be expressed in terms 
of values of 4 at nodes of the 9-point element. 

The method of Dennis and Hudson [24] employed this procedure in principle; 
the central-difference approximations which correspond to CI = 0 in (6) and other 
similar formulae were used to evaluate Co and C,*. However, in [24, 251 the 
h4-accurate terms in the final approximations were left as deferred corrections and 
all coefficients multiplying terms in 4, were left in exponential form. In the present 
case one of the objections to using the corrections C, and C,* in the respective dis- 
cretized forms (17d) and (32) in the elimination process is that the expressions used 
to eliminate rl, r2, r3, and r4 will contain coefficients depending on values of u and 
v at points other than the central point (x,, y,) of the 9-point molecule. This may 
not be desirable when these velocity components are obtained from the numerical 
solution of some other equation, e.g., from a stream function. We have therefore 
adopted a derivation of the compact approximation which depends upon non- 
discretized forms of the corrections C,, and C,*. Some details are given in the 
Appendix for the sake of clarity of the approach used, but the final result of the 
elmination gives the h4-accurate results (30) where the coefficients d, are given by 

d,, = 40 + 2h*(u; + 0;) - 4h*[(&#x), + (&@y),] 

d, = 8 -4/m, + h2[u; - 2(&Qx),] + ~h3[u,(&+?x), + v,(du/~y),- (V2u),] 

d, = 8 -4hv, + h*[v; - 2(&#y),] + ~h3[u,(&/&+, + v,(&~/iYy)~ - (V’v),] 

d, = 8 + 4hz4, + h2[+ 2(&@x),] - ;h3[u,(&@x), + v,,(&.t/dy), - (V2u),) 

A4 = 8 + 4hv, + h2[v;- 2(&1/~y),] - ~h3[u,(~v/~x),+ v,(c%/t3y), - (V’v),] 

d, = 2 - h(u, + v,J + ~h2u,v, - ;h2H, 

d, = 2 + h(u, - vo) - ~h2u,v, + fh2H, 

d, = 2 + h(u, + vo) + ~h2u,vo - fh2H, 

d, = 2 - h(u, - vo) - ~h2u,v, + + h*H,. 

In these expressions 

v* = a21ax* + a*/ay* 

(33) 

(34) 

and 

H, = (aqax), + (au/ay), . (35) 

The term B, = 0 in (30) when (33) are used to define the coefficients d,, which give 
the h4 approximation to (2). In the case of the equation 

a3pjaX2+ a5play2- ua4/ax- ua#lay= R(X,Y) (36) 
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the coefficients in (30) are still given by (33) but with 

B, = -h*{ 8Ro + (1 - +hu,) R, + (1 - 4 ho,) R, + (1 + ihu,,) R, + (1 + $hu,) R4}. 

(37) 

It may be noted that if u = o = 0 in (36), the approximation (30) gives the 
standard 9-point h4 approximation to Poisson’s equation. We could also point out 
that, although the last bracket in the expression for 4, in (33) can be equated to 
zero in the case of an incompressible fluid, it does not seem desirable to do so. The 
reason for this is that this term balances the terms on the right-hand side of (30) 
which involve the quantities (&A/&X), or (&/~?y),, in the coefficients d,-d4 in (33). 
The balance of all these terms on the left-hand side of (30) is O(h4) because of the 
second relationship of (18) (interpreted in turn in the x and y directions). The terms 
in (&/ax), and (&/a~), in the coefficients d,-d4 of (33) have to be calculated 
and they will involve 0(/z*) truncation errors. If, therefore, we omit the term 
in (&/&), + (au/+), in d,,, these truncation errors will be unbalanced and 
the approximation (30) will lose its O(h4) accuracy. It therefore seems to be 
appropriate to include the term (&~/ax), + (&/+), in (30) by actually calculating 
the derivatives with h*-accurate central-difference formulae. In any case these 
derivatives are required in the calculation of d,-d,, so no additional computational 
work is involved. 

Finally, there is an alternative way of expressing the coefficients (33) which is 
particularly useful if the Navier-Stokes equations are to be solved numerically 
using the formulation in terms of primitive variables. In such a case the function 
4(x, y) would itself be a velocity component, for example, a typical equation would 
be 

a*qax2 + a2qay* - uaulax - uaulay = aplax, (38) 

where the term on the right-hand side is the pressure gradient in the x direction and 
all variables are dimensionless. The h4-accurate approximation to (38) would now 
be (30) with u replacing c++ but the coefficients d, given by (33) and there would be 
a similar equation to (38) defining the velocity component u in terms of the 
pressure gradient iTp/ay leading to a similar approximation (30) with the same coef- 
ficients (33). The pressure gradient in (38) can be identified with the term R(x, y) 
in (36) and hence B, in (30) is defined by (37). 

The coefficients d,-d4 can then be rewritten as 

d, = 8 - 4~~4, + hk; - 2h*(aujax), - p?(ap/ax), 

d2 = 8 - 4h, + h%; - 2h*(au/ay), - p23(apjay), 

d3 = 8 + 4hu, + VU; - 2h*(aujax)o + ;h3(aplax), 

d4 = 8 + 4h, + h%; - 2h*(aulay), + th3(aplay),. 

(39) 
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5. COMPUTATIONAL EXAMPLES 

Four numerical illustrations of the present h4 methods are given in this section. 

EXAMPLE 1. The first illustration is the solution of the Blasius equation for 
boundary-layer flow past a semi-infinite flat plate. For steady flow this gives a 
l-dimensional example which has been considered by Hirsh [ 121 during the course 
of his investigation of numerical results which can be obtained using h4 implicit 
methods due to Kreiss. 

The formulation of the problem and the variables used are given by Schlichting 
[28]. Here we use a variable v which is half the corresponding variable used by 
Schlichting [ZS, p. 1173. The equation to be solved for the function f(q) is then 

f”’ +ff” = 0 (40) 

with the boundary conditions 

f(O) =f’(O) = 0, f’(co)=2. (41) 

If we put 

f’(v) = 2 + 0) (42) 

then (40) can be written as 

with 

qy - UqY = 0 

u’ = -(2 + fj) 

and boundary conditions 

d(O)= -2, 4(aJ)=O, 

(43) 

(44) 

u(0) = 0. (45) 

The problem now gives a straightforward application of (21) with r0 = C, = 0 at 
each grid point. The function u(q) needed to define (19) is obtained by integrating 
(44) subject to the initial condition in (45). This calculation is performed step by 
step using the h4-accurate approximation 

u(h) = -2h - h{9&0) + 19$(h) - 54(2/r) + 4(3h)}/24 (46) 

for the first step and then continuing the calculation using Simpson’s formula at 
uniformly spaced grid points from r] = 0 to some large enough value q = I], at 
which the condition d(q,) = 0 is a satisfactory approximation to the condition 
f$(co)=O in (45). 

A simple iterative successive over-relaxation procedure is used to solve the equa- 
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tions. With a suitable choice of relaxation parameter and value of v~, one iterative 
sweep of (21) is followed by an application of (46) and continuation by Simpson’s 
rule to determine an approximate u(q) up to q = q 5. This process is repeated until 

1 11 - f$‘“‘/QP + I ))I < &, 

where k is the iteration count and the summation is over all internal grid points. 
The procedure converges for all small enough h because u”(0) = -1.328, 
approximately, and U”(V) increases monotonically to zero as q increases from q = 0 
to r] = co. Thus it is very easy to satisfy (22); for example, when h = 0.4 the left-hand 
side of (22) is never more than 0.085 which is many times less than the right-hand 
side within the necessary computational domain. 

The calculations were carried out for h = 0.1, 0.2, 0.4 and 0.8 taking v], = 6.4 
which is considerably greater than necessary; i.e., it corresponds to the value 
q = 12.8 of the variable u used by Schlichting (cf. Table 7.1 of Ref. [28]). The value 
E = lop8 was used in (47). The minimum number of iterations occurred with a 
relaxation factor of about 1.7 and for this value the number of iterations required 
starting from the initial assumption d(r])=O (q >O), u(q) = -21 was in the 
neighborhood of 50 for h = 0.2, 0.4, 0.8 and about 180 for h = 0.1. 

Some typical results are shown in Table I which gives values of f(q) and f’(q) 
at several locations of q for the four grids together with the corresponding values 
off”(O). This is obtained by integrating (43) from q = 0 to q = co, which gives 

f”(O) = d’(O) = -jox (i5(2 + f$) dq. (48) 

The integral is then evaluated by Simpson’s formula. Because of a difference in 
definition of variables, the grid used by Hirsh [ 121 appears to be H = ha so it 
is not possible to compare directly with results in Table I. For the sake of com- 
parison we have computed results using four grid sizes equal to four used by Hirsh. 
Values of f”(O)/(Z 4) from the present solutions are compared with those 

TABLE I 

Calculated Approximations to the Blasius Function f(q) and Its Derivatives Using 
the /?-Accurate Approximation (21) 

h f"(O) f(0.8) f’(0.8) Al.61 f’(1.6) f(2.4) f ‘(2.4) 

0.8 1.35939 0.4306443 1.0377541 1.5747490 1.7542925 3.1048803 1.9734612 
0.4 1.32911 0.4200633 1.0333462 1.5689592 1.7520514 3.0850878 1.9754066 
0.2 1.32828 0.4203061 1.0335035 1.5690861 1.7521553 3.0853062 1.9755678 
0.1 1.32823 0.4203 199 1.0335131 1.5690937 1.7521620 3.0853195 1.9755783 
0.05 1.32823 0.4203207 1.0335131 1.5690947 1.7521620 3.0853205 1.9755783 
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TABLE 11 

Comparisons of the Skin Friction from 
the Blasius Equation Using Grids H = hfi 

0.469600 -f”(0)/23’2 

H Present Hirsh [lo] 

1.0 - 0.004064 0.038766 
0.5 -0.000110 0.003887 
0.4 -0.OOfKM3 0.001170 
0.2 -0.OOOOO2 O.CK0018 

calculated by Hirsh in Table II. Hirsh gives the exact value E =f”(0)/(2 fi) as 
E = 0.469600 which we have confirmed by means of the solution at h = 0.05. 
Calculated results at various grid sizes are compared with E in Table II for the 
solutions of 
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x=0.2 

TABLE III 

Computed Solutions of (49) 

x=0.8 x= 1.6 

o.05 0.2 0.4995 0.505615 0.506286 0.0119 0.007910 0.007849 O.OQOO 0.000000 o.oooooO 
0.1 0.5045 0.506244 0.506286 0.0090 0.007853 0.007849 o.oooo 0.000000 o.oooooO 

0.2 
0.2 0.7024 0.703757 0.703230 0.1258 0.128403 0.127554 0.0025 0.002380 0.002306 
0.1 0.7005 0.703263 0.703230 0.1268 0.127607 0.127554 0.0023 0.002311 0.002306 

0.5 0.2 0.7599 0.761090 0.761020 0.2222 0.223942 0.223768 0.0150 0.015030 0.014968 
0.1 0.7607 0.761024 0.761020 0.2232 0.223779 0.223768 0.0150 0.014972 0.014968 

“’ 
0.2 0.7749 0.775294 0.775276 0.2532 0.253540 0.253489 0.0228 0.022413 0.022382 
0.1 0.7752 0.775277 0.775276 0.2534 0.253492 0.253489 0.0225 0.022384 0.022382 

4,0 0.2 0.7771 0.777296 0.777297 0.2581 0.257910 0.257898 0.0242 0.023671 0.023652 
0.1 0.7773 0.777297 0.777297 0.2579 0.257899 0.257898 0.0238 0.023653 0.023652 

Note. 4A is the h*-accurate solution obtained by applying the Crank-Nicolson method to (6) with 
x = Q. BB is the h“-accurate solution obtained using (21). E is the exact solution. 

approximation in space is superior to that obtained using h*-accurate spatial 
approximations. Naturally, the accuracy of the numerical solution will depend also 
upon the accuracy of the method of approximation in time. In the present paper the 
Crank-Nicolson method outlined in Section 3 was used in the following way. 
Numerical solutions were obtained for two separate spatial grid sizes h = 0.1, 0.2 
with d(x,, t) = 0, where x, =4.8 which is more than large enough to approximate 
adequately the condition on 4 for large x. For each spatial grid the time step was 
reduced sufficiently (by repeatedly halving it) until the solution has converged to a 
limit at all grid points. In this way the numerical solutions were made independent 
of the truncation in time. 

Some results of these calculations are shown in Table III, where comparisons are 
made at some selected values of the time. Both the h2-accurate approximation (6) 
with the value CI = 4 proposed by Dennis and Hudson [4] and the h4-accurate 
approximation of the present paper were used; these form the basis of comparison 
in Table III and they show clearly the superiority of the h4-accurate method. It is 
also of passing interest to note that the h*-accurate central-difference approximation 
which corresponds to c1= 0 in (6) was also used and found to give slightly inferior 
results to the h*-accurate results in Table III. 

EXAMPLE 3. As an example involving two space variables in a steady state 
problem we consider again an example used by Dennis and Hudson [24] to 
illustrate the h4-accurate method in which an equation of type (36) was 
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approximated using present methods but the final approximation was left with 
exponential coefficients which were not expanded further as at present. This 
example considered the simultaneous equations 

a2qa2 + a*ujayz - uau/ax - vaujay = (2 sin y + sin X) cos x 

a2vlax2 + a%/ay2 - uav/ax - vavlay = (sin y - 2 sin .x) cos y 
(53) 

which have a simple exact solution 

u(x, y) = -cos x sin y, v(x, y) = sin x cos y. (54) 

The solution of (53) was sought within the square region 0 <x< rc, 06 y 6 rc 
subject to boundary conditions for u and v calculated from (54) on the square 
boundaries. 

This problem is a modification of one considered by Roscoe [29] in a discussion 
of numerical methods very similar to those of Allen and Southwell [30]. The terms 
on the right-hand side of (53) do not themselves constitute possible pressure 
gradients for (53) to be truly representative of the 2-dimensional Navier-Stokes 
equations, but (54) satisfy the equation of continuity. Thus the problem of solving 
numerically (53) gives a satisfactory enough simple application of the present 
methods. Dennis and Hudson [24, pp. 49-501 considered approximate solutions by 
several methods and found that the h4 difference equations with exponential coef- 
ficients gave very accurate results. It was in fact possible to obtain a solution 
correct to between four and five decimal accuracy using a grid size of h = n/10. 

In the present paper Eqs. (53) have been solved using the methods of Section 4 
with the same grid h = n/10 and employing a simple iterative successive over-relaxa- 
tion method in which one sweep of the domain corresponding to the first of (53) 
is followed by a similar sweep of the second. The procedure was started from the 
assumption that u = v = 0 everywhere except on the boundaries and converged 
rapidly to a solution to live decimal precision. In Table IV we give details of four 
computed solutions for u(0.7n, y) for values of y/n from 0 to 0.5. The solution uA 

TABLE IV 

Comparison of the /?-Approximations ug Obtained by Present Methods and uc in [24] 
with Exact Solution uA to (53) with (54) at x = 0.771 

0 0 0 0 0 0 
0.1 0.18164 0.18163 0.18164 0.1817 0.1829 
0.2 0.34549 0.34548 0.34550 0.3452 0.3478 
0.3 0.47553 0.47553 0.47557 0.4749 0.4785 
0.4 0.55902 0.55903 0.55909 0.5580 0.5624 
0.5 0.58779 0.58781 0.58787 0.5866 0.5913 

Note. The approximations u,, and u6 are h2 accurate. 
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is the exact solution and us is the h4-accurate solution obtained by means of the 
approximations given in Section 4. The solution uC is the solution computed by 
Dennis and Hudson [24] by means of h4-accurate approximations with exponen- 
tial coefficients. Finally, ug and uE are h2-accurate solutions obtained using the 
2-dimensional analogue of (6) with the respective values c( = l/12 for ug and LX = 0 
(central differences) for uE. One could observe that the present results are an 
improvement on those given by Dennis and Hudson [24], i.e., uB is generally an 
improvement on uC and both are substantially better than the results obtained from 
the h2-accurate approximations. 

In this example the exact solution is known and we can demonstrate numerically 
that our finite difference method is h4-accurate. With this objective, we repeated the 
calculations above with (i) h = z/10 and (ii) h = 7r/20 using double precision 
arithmetic and assuming that the iteration had converged when 

where k is an iteration count and the summations include all internal points of the 
solution domain. Dividing the error in the coarse mesh solution at a given point by 
the corresponding error in the line mesh solution gave a value of approximately 
l&as one would expect from an h4-accurate method when the steplength is 
halved. Typical results are given in Table V. 

The exact solution to the time dependent problem of Example 2 is also known 
and it is easily seen from the results given in Table III that the error in bB(x, t) is 
reduced by a factor of approximately 16 when the steplength in the x-direction is 
reduced from 0.2 to 0.1. 

For the problem discussed in Example 1, we note that the values of f’(y1) 
obtained by the h4-accurate method with h = 0.1 and h = 0.05 agree exactly to the 
eight significant figures quoted in Table I. If we assume that these values represent 
the exact solution, then again we find that the errors are reduced by a factor of 

TABLE V 

Numerical Demonstration of the Order of the Finite-Difference Approximation 
when Applied to Example 3 

Yh UA 4 
Error in ug 
Error in uz 

0.1 0.18163563 0.18165482 0.18163680 16.4 
0.2 0.34549 150 0.34551853 0.34549315 16.4 
0.3 0.47552826 0.41555596 0.47552993 16.6 
0.4 0.55901699 0.55904263 0.55901853 16.1 
0.5 0.58778525 0.58780972 0.58778671 16.8 

Note. u,., is the exact solution and ug, us are the numerical solutions with h = n/10, n/20, respectively. 
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approximately 16 when the steplength is reduced from 0.4 to 0.2. The factor is less 
consistent when the steplength is reduced from 0.8 to 0.4, but even in this case, the 
results indicate that the order of the method is in the neighbourhood of four. 

EXAMPLE 4. As a final example we consider the problem of 2-dimensional free 
heat convection in a square cavity defined by 0 < x < 1, 0 < y < 1. All variables are 
assumed to be dimensionless. In terms of these variables the governing equations 
can be written 

VI) = -[, (55a) 

V2[=Pr-l (U$+u$)-Ras, 

v2T=u~+vg. 

(55b) 

where u = a$/@, v = -8$/a x are the 2-dimensional velocity components in the x 
and y directions, Ra is the Rayleigh number, Pr is the Prandtl number, and 
v2 = azja.9 + a2layf 

If C denotes the unit square and n is the outward normal to it at any point, 
Eqs. (55) are to be solved within C subject to the conditions 

+=a+jan=o on C; (56a) 

T= 1 when x=0, T=Owhenx=l; (56b) 

aTlay= when y=O, 1. (56~) 

The three equations (55) are each of the type (36) and can thus be approximated 
by the h4 formulae discussed in Section 4. The term involving aT/ax in (55b) is a 
forcing term coming from the solution of (55~) and must be approximated in (55b) 
correct to h4 accuracy. However, if we rewrite Eq. (37) in the form 

&,= -h2 12&,+ [R, +R,+Rj+&-4&] 
i 

-~h[u,(R,-R,)+v~(R2-R4)I 7 
I 

(57) 

it is necessary to use a 5-point formula only for estimating R, = -Ra(aT/ax),, the 
standard 3-point central-difference approximation being sufficiently accurate for 
RI, R2, R3, and R,. 

An expression for the boundary vorticity, given by Woods [31], may be written 
in the form 

ia= -$h-;rI,+O(h’), (58) 
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where B denotes a point on the boundary and I, denotes the first internal point on 
the normal through B. For the present investigation it is necessary to compute the 
O(h2) and 0(h3) terms and this leads to 

ir,= -$ (8~51, - h,) -A (I@,, - 1 Ii,, + X,,) + W4), (59) 

where I2 and Z3 are the next two internal points on the normal through B. 
We obtained solutions for Pr = 0.71, Ra = 103, lo*, lo5 with h = h, &, 8, & using 

both the h*-accurate 2-dimensional form of (6) with c1= 4 and the h4-accurate 
method of Section 4. In each case the program performed one iteration of the 
vorticity field followed by n iterations of the streamfunction and temperature fields 
and repeated this until 

In general we set n = 1; however, for the 0(h4) calculations with Ra = lo5 we 
increased IZ to around 25 and introduced a relaxation factor of 0.3 to ensure 
convergence of the iterative procedure. If solutions at higher Rayleigh numbers 
were required, it would probably be necessary to rewrite the O(h4) method as an 
U(h3) method with difference correction as described in Section 2. 

The results in Tables VI-VIII were obtained using the 2-dimensional form of (6) 

TABLE VI 

Properties of the Solution of the Heat Convection Problem Obtained Using the 2-Dimensional 
h2-Accurate Analogue of (6) for the Case Pr = 0.71, Ra = lo3 

h 
%rmx ulna, N%,, N%,O 

I*mld I y (x = 0.5) x(y=O.5) Nuo v(x=O) Y (x=0) 

1 
iti 

1 
20 

1 
30 

1 
;Tii 

Bench-mark 

1.171 3.398 3.421 1.106 1.453 0.728 
0.802 0.193 0.121 1 

1.171 3.580 3.621 1.112 1.485 0.703 
0.811 0.181 0.097 1 

1.173 3.618 3.662 1.115 1.495 0.697 
0.812 0.180 0.092 1 

1.174 3.631 3.677 
0.813 0.179 

1.174 3.649 3.697 
0.813 0.178 

1.116 1.500 0.694 
0.090 1 

1.117 1.505 0.692 
0.0092 1 
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TABLE VII 

Properties of the Solution of the Heat Convection Problem Obtained Using the 2-Dimensional 
h*-Accurate Analogue of (6) for the Case Pr = 0.71, Ra = lo4 

%ax “lW3X km, N%,, 
h Itimid 1 y(x=O.5) x (y=O.5) Nu, JJ(x=O) y(x=O) 

1 
lo 5.282 15.435 17.258 2.294 3.797 0.620 

0.809 0.041 0.170 1 

1 
20 5.117 15.972 19.014 2.238 3.553 0.599 

0.820 0.125 0.151 1 

1 
5 5.091 16.083 19.344 2.234 3.521 0.592 

0.822 0.122 0.148 1 

1 
40 5.083 16.125 19.465 2.236 3.518 0.589 

0.822 0.120 0.147 1 

Bench-mark 5.071 16.178 19.617 2.238 3.528 0.586 
solution 0.823 0.119 0.143 1 

TABLE VIII 

Properties of the Solution of the Heat Convection Problem Obtained Using the 2-Dimensional 
h*-Accurate Analogue of (6) for the Case Pr = 0.71, Ra = 10’ 

4%,X VllW.X Wnax Nun,,, 
y(x=O.5) x(y=O.5) Nuo y(x=O) Y(x=o) 

1 
ii-l 11.707 38.29 

0.849 
54.58 4.493 7.813 0.708 
0.091 0.186 1 

1 
zi 9.638 35.44 

0.854 
62.76 4.827 9.040 0.722 
0.076 0.105 1 

1 
30 9.311 34.87 

0.855 
66.26 4.619 8.194 0.729 
0.071 0.090 1 

9.215 34.76 67.16 4.553 7.902 0.730 
0.855 0.068 0.087 1 

Bench-mark 9.111 34.73 68.59 4.509 7.717 
solution 0.855 0.066 0.08 1 

0.729 
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with a = b; in this case the boundary vorticity was evaluated from (58) and the 
standard 3-point approximation was used to represent Ra(aT/ax) and condition 
(56~). The results in Tables IX-XI were obtained using the scheme defined by 
Eqs. (30), (33), and (57); in this case the boundary vorticity was evaluated from 
(59) and a 5-point approximation was used to represent condition (56~). 

In each table we give 

(i) the magnitude of the streamfunction at the mid-point of the cavity 
(ii) the maximum value of u on the vertical mid-plane, together with its 

location 
(iii) the maximum value of v on the horizontal mid-plane, together with its 

location 
(iv) the average Nusselt number Nu,,, on the vertical boundary at x = 0 
(v) the maximum and minimum values of the local Nusselt number on x = 0, 

together with their locations. 

Note that the maximum values referred to above (and their locations) were 
evaluated by using a fourth-order interpolating polynomial. 

Recent bench-mark solutions of this problem have been given by de Vahl Davis 
[32] and various comparison solutions have been discussed by de Vahl Davis and 
Jones [33]. The bench-mark solutions were obtained by using mesh refinement and 
extrapolation in conjunction with a second-order method and are claimed to 
be very accurate. These solutions are therefore included in Tables VI-XI for 

TABLE IX 

Properties of the Solution of the Heat Convection Problem Obtained Using the h4-Accurate Methods 
of Section 4 for the Case Pr = 0.71, Ra = lo3 

%n.u “Ill,” N%,X N%,, 
h I*d I y (x = 0.5) x(y=O.5) Nuo Y (x=0) y(x=O) 

1 

iFI 

1 
20 

I 
30 

1 

40 

Bench-mark 1.174 3.649 3.697 1.117 1.505 0.692 
solution 0.813 0.178 0.092 1 

1.1784 3.6702 3.7179 1.1167 1.4997 0.06946 
0.8120 0.1803 0.0690 1 

1.1752 3.6516 3.6998 1.1167 1.5039 0.6914 
0.8133 0.1783 0.0815 1 

1.1748 3.6500 3.6980 1.1173 1.5053 0.6913 
0.8133 0.1783 0.0858 I 

1.1747 3.6497 3.6977 1.1176 1.5058 0.6913 
0.8132 0.1783 0.0871 1 
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TABLE X 

Properties of the Solution of the Heat Convection Problem Obtained Using the h“-Accurate Methods 
of Section 4 for the Case Pr = 0.71, Ra = 10“ 

h 
%ax ultm hmx N%,, 

I*4 I y(x=OS) x(y=O.5) N% y(x=O) Y(x=o) 

1 
itI 

5.0996 16.2845 19.3361 2.3305 3.7527 0.5926 
0.8212 0.1273 0.1737 1 

1’ 

20 
5.0735 16.1842 19.6584 2.2324 3.5093 0.5858 

0.8232 0.1191 0.1411 1 

1 

30 
5.0734 16.1829 19.6315 2.2356 3.5110 0.5853 

0.8232 0.1189 0.1433 1 

1 
40 

5.0735 16.1829 19.6293 
0.8232 0.1189 

Bench-mark 5.071 16.178 19.617 
solution 0.823 0.119 

2.2396 3.5193 0.5851 
0.1440 1 

2.238 3.528 0.586 
0.143 1 

TABLE XI 

Properties of the Solution of the Heat Convection Problem Obtained Using the h4-Accurate Methods 
of Section 4 for the case Pr = 0.71, Ra = 10’ 

h 
%nax urnax Numax Nbli, 

IGnudI y(x=O.5) x (y=OS) NM,, Y(x=o) Y(x=o) 

1 
ro 

9.4257 35.834 52.781 4.8230 8.6502 0.7406 
0.8552 0.0845 0.1778 1 

1 
20 

9.1037 34.59 1 68.083 4.6880 8.3721 0.7299 
0.8536 0..0682 0.0988 1 

1 
5.i 

9.1085 34.683 68.700 4.5220 7.8276 0.7276 
0.8544 0.0663 0.0800 1 

1 
40 9.1126 34.716 68.637 4.4959 7.6830 0.7279 

0.8545 0.0660 0.0800 1 

Bench-mark 9.111 34.73 68.59 4.509 7.717 0.729 
solution 0.855 0.066 0.08 1 1 
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TABLE XII 

Percentage Differences between Various Properties of the 
Bench-Mark Solutions and Those of the Present h4-Accurate Solutions 

10’ l/l0 0.31 0.58 0.57 0.03 
l/20 0.10 0.07 0.08 0.03 
l/30 0.07 0.03 0.03 0.03 
l/40 0.06 0.02 0.02 0.05 

lo4 l/l0 0.56 0.66 1.43 4.13 
l/20 0.05 0.04 0.21 0.25 
l/30 0.05 0.03 0.07 0.11 
l/40 0.05 0.03 0.06 0.07 

lo5 l/l0 3.45 3.18 23.05 6.96 
l/20 0.08 0.40 0.74 3.97 
l/30 0.03 0.14 0.16 0.29 
l/40 0.02 0.04 0.07 0.29 

comparison purposes: the improved accuracy of the O(h4) results in tables IX-XI 
over the 0(/r’) results in Tables VI-VIII is immediately obvious. 

To obtain a clearer assessment of our O(h4) results we give, in Table XII, the 
percentage differences between various properties of our solutions and those of the 
bench-mark solutions. De Vahl Davies [32] has estimated that the percentage 
errors in the latter for Ra = 103, 104, and lo5 are no more than 0.1, 0.2, and 0.3, 
respectively. From Table XII we see that our results based on h = & and h = & are 
well within these tolerances for all Rayleigh numbers considered. Even with h = &, 
most of the properties for Ra = lo3 and Ra = lo4 are within the specified tolerances. 
It is relevant to note that the extrapolated bench-mark solutions were based on two 
O(h2) solutions obtained with (i) h = &, & when Ra = 103, lo4 and (ii) h = &, &, 
when Ra = 105. Thus the h4-accurate method gives results of comparable accuracy 
on a single comparatively coarse mesh. 

In the first three examples considered, we noted that the error decreased by a 
factor of approximately 16 when the steplength was halved-as we would expect 
from an O(h4) method. In cases where the exact solution is unknown, such as the 
present example, it is possible to estimate the order of the method numerically 
provided that three solutions based on sufficiently small steplengths are available. 
However, when de Vahl Davies [32] applied the technique to his O(h’) solutions, 
he found that his estimate of the order varied throughout the cavity from just under 
one to just over three. Using our O(h4) results, we too found that the order varied 
throughout the cavity and conclude, with de Vahl Davies, that the steplengths used 
are too large for the procedure to be valid in this example. 

Another difficulty, also described by de Vahl Davies, concerns the estimation of 
the local Nusselt numbers on the boundary at x =O. He found that the use of 
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differentiation formulae of orders one to four produced significantly different values, 
particularly when the steplength and Rayleigh number were large, and concluded 
that the second-order formulae produced the best overall results. We carried out 
similar experiments on our 0(h4) results but, in our case, the formulae of orders 
three and four were in closest agreement, with the third-order formula being 
marginally superior overall. 

APPENDIX 

One method of obtaining (16) with the associated coeficients (17) is to use the 
result 

XI + 23 - 2x0 = h2& + h h4x1” + O(h6) (Al 1 

and to substitute for the derivatives on the right-hand side using (12). With neglect 
of the O(h6) term in (Al) and use of (lo), this gives the approximation 

The approximation ( 15) is obtained by expressing the second derivative in (A2) in 
central differences, but we can also evaluate this term by formal differentiation. It 
may be noted from (11) that 

g’ = - $g; g(xo) = 1 (A3) 

and we find that 

[ $ ( (fib - rd] = Vodd’ + Wb - uofo) 4; 
0 

+ (fd’ - uofb -.A3 do - (4 - uo4. (A4) 

The first two terms of (A2) can be dealt with by expanding g as a Taylor series 
about x=x0, from which it is found that 

(A5) 
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The derivatives of g in (A5) can easily be evaluated from (A3) to give, with neglect 
of the O(P) term, 

(A61 

We now substitute (A4) and (A6) into the appropriate terms in (A2). The combina- 
tion of the term multiplying &, from (A4) with the similar one multiplying (dl + &) 
from (A6) can be omitted since #r + d3 - 2& = 0(/z’) and the resulting term is thus 
O(h6). Further, all remaining derivatives of 4 and Y in (A2) can be expressed in 
h2-accurate central differences without introduction of errors of order less than 
O(h6). Thus we obtain the formulae (17); the formula (17d) corresponds to the 
terms involving the derivatives of r in (A4). 

The form (21) of the approximation with the associated coefficients (19) is not 
quite the same as (16) with (17) but is still of h4 accuracy. In fact, the sum of the 
three terms in &,, dl, and & in (21) differs from the sum of the corresponding 
terms in (16) by terms of amount 

h4u;‘(#, + q43 - 2$,)/144. 

These are O(P) accuracy, giving the required h4-accurate approximation. 
Finally, it has been pointed out in Section 4 that the most appropriate way of 

expressing the corrections C, and C,* in terms of values of 4 at the nodal points 
of the 9-point molecule seems to be to express them in non-discretized form. Thus 
we can write, approximately, 

co= -h4[a2rlaX2-uarlax],l12 (A7) 

and if we use the definition 

(‘48) 

from (3) and substitute in (A7), an expression for CO in terms of fourth and lower 
order derivatives of 4 is found. Likewise, we can write 

C,* = h4[a2r/ay2 - aat@y],,/12 (A9) 

and substitute 

r(x,y)= a3plax2-ua~px (AlO) 

in it to find a similar expression for C,*. 
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All the derivatives of 4 in these two expressions are now discretized using 
h2-accurate central-difference expressions. Some typical approximations needed are 

h4(a4~/aX2ay2)o=4~0-2(~1+~2+~3+~4)+(~5+~6+~7+~8), (All) 

2~3(~3~l~X2Ml = -2($2 - 44) + $5 + 46 - 47 - &3, (A121 

2h3P3WX +JJ2)o = -2(d, - 43) + 45 - 46 - $7 + 48, (A13) 

4h2(J2tiPX G)o = 45 - 46 + 47 - 48, (A14) 

together with the results similar to (18) in terms of derivatives of 4 in the x direc- 
tion, with corresponding results in terms of d2, 42, and #4 for derivatives of 4 in the 
y direction. 

After substitution of all these approximations in the results derived from (A7) 
and (A9) using the respective expressions (A8) and (AlO) we find, after simplifica- 
tion, that 

12(C,+C,+)=8&- {4-2h uo - )h3uo(au/ay), + fh3(a2U/ay2,,} q51 

- (4 - 2hu, - g13u0(&@x), + g13(a2u/cYX2)o}~2 

- (4 + 2hu, + $13uo(&4/dy), - pz3(~2U/ay2)o} fj3 

- (4 + 2hu, + g13uo(c%/~x), - gz3(a2u/~X2),} f+h4 

n=5 (Al5) 

where the coefficients d5-d8 are exactly those defined in (33). The remaining coef- 
ficients in (33) arise after simplification of the expression obtained when Co + C,* 
defined by (AH) is substituted in the equation found by adding the left-hand sides 
of (16) and (31) and equating to zero. It is clear that the coefficients d5-d8 arise 
only from Co + C,*. 
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